Category Archives: Baseball

My Model Monday: Visualizing Hitter Performance

All-encompassing stats are great for many things. WAR has become the standard for comparing baseball players because, more than any other stat, it encapsulates all of a player’s contributions in one number. On the offensive side, stats like OPS and wOBA provide a single stat that basically amount to offensive production per plate appearance. Stats like these are useful both in that they assign values to the different ways in which players provide value, and because universal measures allow easy comparisons between players. Want to know whether Giancarlo Stanton or Joey Votto was a more productive hitter last year? No number will give a perfect answer, but wOBA will get you close.

Continue reading My Model Monday: Visualizing Hitter Performance

Wait, why does PML favor the Astros?

After four games, this World Series is tied at two games apiece and shaping up for an exciting finish! According to our PML model, Houston has a 53% chance of winning it all. This might come as a surprise; the majority of other prediction models, like FiveThirtyEight’s Elo ratings, give Los Angeles a slight 56% edge—not surprising, given the Dodgers play two of the three games at home. In contrast, PML favors the away team in every game from here on out. Ultimately, the difference between the 44% chance FiveThirtyEight gives the Astros and our 53% is not huge. Whichever you prefer, the Series is a toss-up. But it’s useful to dig into why we’re a bit higher on the Astros, and in the process, get to know our PML model a little better.

Continue reading Wait, why does PML favor the Astros?

MLB Wild Card Preview: PML 2017

Last year, on my personal blog, I posted about a model I created for evaluating baseball teams and predicting games. I’ve re-run this model for the 2017 season, and will use it to predict games and series throughout the playoffs, so make sure to keep checking back! If you’re interested in the full methodology, I’ve posted it here. For a quick look at how the model shakes out for the 2017 season, look here.

Continue reading MLB Wild Card Preview: PML 2017

Rating Pitchers and Offenses: PML 2017

Last year, on my personal blog, I posted about a model I created for evaluating baseball teams and predicting games. I’ve re-run this model for the 2017 season, so let’s take a look at the results! Be sure to check back throughout the playoffs, as I’ll use this model to predict games and series throughout the playoffs. I’ve already posted wild card PML predictions.

Continue reading Rating Pitchers and Offenses: PML 2017

A Poisson Maximum Likelihood Model for prediction and evaluation of MLB teams and pitchers

This article was originally published in 2016 at jackoliverwerner.wordpress.com.

Introduction

Sports are all about matchups: two teams battling it out on the court, rink, or field until one side emerges the winner. Head-to-head matchups are an especially prominent component of baseball. The game is an overarching matchup of one team against another, but it contains smaller competitions: a pitcher and a catcher trying to outscheme an opposing hitter, a second baseman playing cat-and-mouse to hold a runner close to the bag, or a starting pitcher with a scissors trying to get out of wearing throwback jerseys.

Continue reading A Poisson Maximum Likelihood Model for prediction and evaluation of MLB teams and pitchers